Centralisers of Galois group actions
نویسندگان
چکیده
منابع مشابه
Deformation of Outer Representations of Galois Group
To a hyperbolic smooth curve defined over a number-field one naturally associates an "anabelian" representation of the absolute Galois group of the base field landing in outer automorphism group of the algebraic fundamental group. In this paper, we introduce several deformation problems for Lie-algebra versions of the above representation and show that, this way we get a richer structure than t...
متن کاملWeighted completion of Galois groups and Galois actions on the fundamental group
Fix a prime number l. In this paper we prove a conjecture [16, p. 300], which Ihara attributes to Deligne, about the action of the absolute Galois group on the pro-l completion of the fundamental group of the thrice punctured projective line. It is stated below. Similar techniques are also used to prove part of a conjecture of Goncharov [11, Conj. 2.1], also about the action of the absolute Gal...
متن کاملDeformation of Outer Representations of Galois Group II
This paper is devoted to deformation theory of "anabelian" representations of the absolute Galois group landing in outer automorphism group of the algebraic fundamental group of a hyperbolic smooth curve defined over a number-field. In the first part of this paper, we obtained several universal deformations for Lie-algebra versions of the above representation using the Schlessinger criteria for...
متن کاملAbout Absolute Galois Group
Absolute Galois Group defined as Galois group of algebraic numbers regarded as extension of rationals is very difficult concept to define. The goal of classical Langlands program is to understand the Galois group of algebraic numbers as algebraic extension of rationals Absolute Galois Group (AGG) through its representations. Invertible adeles -ideles define Gl1 which can be shown to be isomorph...
متن کاملTeichmüller Curves , Galois Actions and Ĝt - Relations
Teichmüller curves are geodesic discs in Teichmüller space that project to algebraic curves C in the moduli space Mg. Some Teichmüller curves can be considered as components of Hurwitz spaces. We show that the absolute Galois group G Q acts faithfully on the set of these embedded curves. We also compare the action of G Q on π1(C) with the one on π1(Mg) and obtain a relation in the Grothendieck-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of the Australian Mathematical Society
سال: 1998
ISSN: 0004-9727,1755-1633
DOI: 10.1017/s0004972700031762